Smart Toilet: A Disruptive Technology to Improve Health and Wellness (2019-2020)


Precision health is an emerging area of research aimed at transforming medicine and healthcare by leveraging digital connectivity and new technologies such as phone apps, wearables and smart textiles. Achieving the goals of precision health using digital connectivity will require novel approaches to daily monitoring of analytical biomarkers from physiological fluids, which currently cannot be achieved using noninvasive approaches.

Our daily excreta, feces and urine, are rich in latent data and a greatly under-utilized source for precision health monitoring. The Duke University Center for WaSH-AID (Water, Sanitation, Hygiene and Infectious Disease) is developing a device for the hands-off extraction and packaging of human excreta so that the sample can be used for diagnosis of wellness and disease. This Duke “Smart Toilet” is a novel platform with the potential to transform healthcare as a noninvasive source of individualized biological data that can be used for early disease detection, surveillance for infectious disease and continuous personalized health and wellness monitoring.

Project Description

This Bass Connections project will focus on the engineering development, quality control, refinement and business and regulatory strategy of the Duke Smart Toilet platform. This effort will include both technical and entrepreneurial activities in order to prepare this unique technology for translation from the lab to the market.

To do accomplish these aims, the project team will:

  1. Carry out proof-of-concept bioanalytical evaluation of the quality of specimens obtained from prototype, using clinical assays such as occult blood or C. difficile (an enteric infection) and microbiome studies through the Duke microbiome core.
  2. Focus on the engineering refinement of the prototype system according to the requirements of the assays described above.
  3. Focus on the identification of the markets and use cases for this technology, specifically installation location such as in hospital rooms, long-term care facility or personal residences. To do this, the team will also focus on the regulatory landscape and other approvals for pilot testing within Duke, including researching building codes and requirements for FDA approval.

Anticipated Outputs

Prototype for data collection; papers for publication; grant applications


Fall 2019 – Summer 2020

  • Fall 2019: Begin monthly meetings with entire group and more frequent subteam meetings; begin background reading assignments; develop engineering prototype v.1.0; begin occult blood/clinical biomarker and microbiome analysis feasibility; research customer discovery and regulatory environment
  • Spring 2020: Identify location for pilot installation; continue occult blood/clinical biomarker and microbiome analysis; develop engineering prototype v2.0
  • Summer 2020 (Optional): Continue engineering, medicine/biology and business/regulatory tasks as needed

Team Outputs to Date

Pulling Health Info from Poop (Fortin Foundation Bass Connections Virtual Showcase 2020)

Developing the “Smart Toilet”: A Screening Tool for Health Monitoring (poster by Jacob Key, Jackson McNabb, Samarth Menta, Claire Yin)

This Team in the News

3 Ideas to Reduce Educational Disparities Post-Pandemic

Bass Connections Teams Share Research Highlights in a Virtual Showcase

Smart Toilet Saves Vital Health Data from Getting Flushed

Duke Researchers Working to Create ‘Smart Toilet’

Researchers' New 'Smart Toilet' Helps Pull Health Info from Poop

Fecal Matters: Learning about Health through Waste

See related team, Smart Toilet: A Disruptive Technology to Improve Health and Wellness (2020-2021).


Image: Katie Sellgren and colleagues, courtesy of Center for WaSH-AID

Katie Sellgren and colleagues.

Team Leaders

  • Geoffrey Ginsburg, School of Medicine-Medicine: Cardiology
  • Sonia Grego, Pratt School of Engineering-Electrical & Computer Engineering
  • Katelyn Sellgren, Pratt School of Engineering-Electrical & Computer Engineering

/graduate Team Members

  • Kaivalya Powale, Master of Engineering Mgmt-MEG
  • Tess Rogers, Juris Doctor
  • Vidhatri Subramanyam Bengaluru, Master of Engineering Mgmt-MEG

/undergraduate Team Members

  • Jacob Key
  • Jackson McNabb
  • Samarth Menta
  • Megan Richards, Biomedical Engineering (BSE)
  • Claire Yin

/yfaculty/staff Team Members

  • Holly Dressman, School of Medicine-Molecular Genetics and Microbiology
  • Jeffrey Glass, Pratt School of Engineering-Electrical & Computer Engineering
  • Brian Stoner, Pratt School of Engineering-Electrical & Computer Engineering

/zcommunity Team Members

  • Douglas Calahan, Argo Systems
  • Eric Levitan, Argo Systems