Detecting A Gerrymander: Sampling the Space of Possible NC Congressional Maps Greg Herschlag, Jonathan Mattingly, Fritz Mayer Luke Farrell, Jacob Shulman, Tiffany Mei, Vinay Kshirsagar, Sam Eure ¹Duke University Depart. Math, ²Duke University Depart. Computer Science **Bass Connections in** Information, Society & Culture ### How to Catch A Gerrymander 2. Add Real Voting Data 3. Check for outliers on the distribution of election outcomes ## Build an Ensemble of Maps #### Why not make every possible map? Over 13³00 possibilities! Have to take a sample. #### Can you take a random sample? A vast majority of possible maps are illegal! Only want a sample of possibly compliant maps. $Map\ Score = \sum_{i} \alpha_i \omega_i$ * Weight ω_i corresponds to α_i #### How do you hunt for compliant maps? 1. Build a score function as a heuristic for compliance: α_1 = Contiguity α_2 = Compactness α_3 = Population Equality α_4 = County Splitting α_5 = Voting Rights Act 2. Assign a probability of generating each map based on this score (β is a tuning parameter) $P(map) \propto e^{-\beta(Map\ Score)}$ 3. Take steps from map to map by swapping precincts with these probabilities as your guide. ### Sampling the Space of Possible Maps #### **Challenges:** - The space is huge, high dimensional, and hard to navigate. - It's easy to get stuck in a region of space and miss out on other good maps. - Must balance exploration and exploitation while taking millions of steps the space. ## Stratified Sampling 1. Define strata: Boundaries that prevent you from stepping too far away from your start point. 2. Create Local Distributions of **Election Outcomes:** Measure steps attempted from one strata to another. 3. Build a Global Distribution of **Election Outcomes:** Merge all the local distributions to get a distribution. # Parallel Tempering Sampling - 1. Iteratively explore energy landscape to find an ideal set of β values - 2. Run Nsamplers in parallel, each with different β values, and periodically exchange positions in the energy landscape ### How do we know we sampled well? The thickest lines represent more steps taken into a stratum. This graph suggests the most attractive strata are the ones with the best scored maps. This PCA of generated maps suggests that we are generating a diverse set of legal maps. #### Detecting A Gerrymander This graph highlights packing and cracking behavior characteristic of gerrymandering while still capturing the natural partisan landscape of the state. Evidence very similar to this was presented to the **Supreme Court in Rucho v. Common Cause** #### Takeaways: - Consistency across both sampling methods suggests robustness of results. - We hypothesize that this S-shaped curve is diagnostic of partisan gerrymandering. - 2016 Enacted map is an outlier across districts Suggesting Partisan Gerrymandering in NC ### Comparing Methods | | Stratified Sampling | Parallel Tempering | |--------------|--|---| | Exploration | Can explore many regions at simultaneously. | Can traverse to new regions faster. | | Exploitation | By enforcing boundaries guarantee thorough sampling. | By swapping β values can focus on regions with good maps. | # Combining Methods Parallel-Stratified Sampling Take the best parts of both methods to make a novel approach: - 1. Assign each stratum its own β value - Periodically swap β values between strata - 3. Vary the size and nature of strata radii