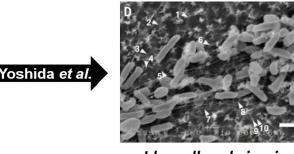
Quantifying PET Hydrolysis by Ideonella sakaiensis Using a Fluorescence Assay based on the Iron (II)-Catalyzed Radical Hydroxylation of Terephthalic Acid (TPA)

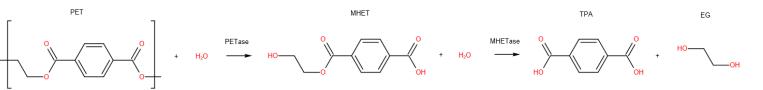
BASS CONNECTIONS

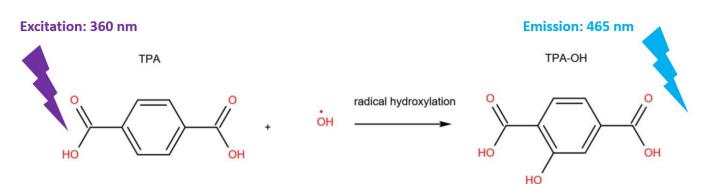

Bass Connections in Energy & Environment

¹Department of Chemistry, Duke University; ²Department of Medicine, Duke University Medical Center; ³Duke Cancer Institute, Duke University Medical Center; ⁴Department of Orthopedic Surgery, Duke University

Introduction

• In 2016, a PET-degrading microbe called *Ideonella* sakaiensis was discovered in Japan (Yoshida et al. 2016)

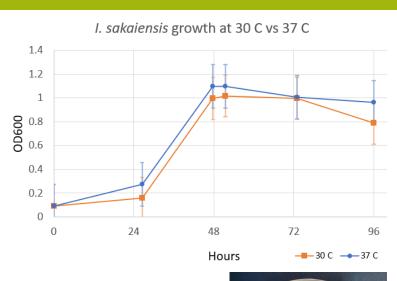



Landfill in Sakai, Japan

ldeonella sakaiensis

• *I. sakaiensis* secretes **PETase and MHETase** that hydrolyze PET into Terephthalic Acid (TPA) and Ethylene Glycol (EG), so production of TPA is a signal of PET hydrolysis

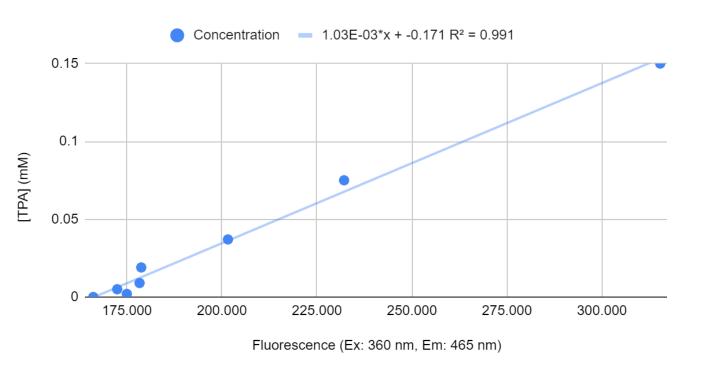
• Current techniques used to quantify [TPA], such as GCMS and HPLC, are cumbersome and slow


Radical hydroxylation of TPA produces a product with a strong and defined **fluorescence signal at 465 nm** (Barreto et al. 1994)

Conclusion

- TPA assay shows promising signs of detecting PET degradation over time, though visual signs of degradation was not observed
- Experiment should be repeated to investigate the high initial TPA signal anomaly
- Identity of *I. sakaiensis* in liquid culture should be confirmed using PCR
- OD600 should be tracked over time to test if *I*. sakaiensis used PET as a carbon source to grow

Culturing Ideonella sakaiensis

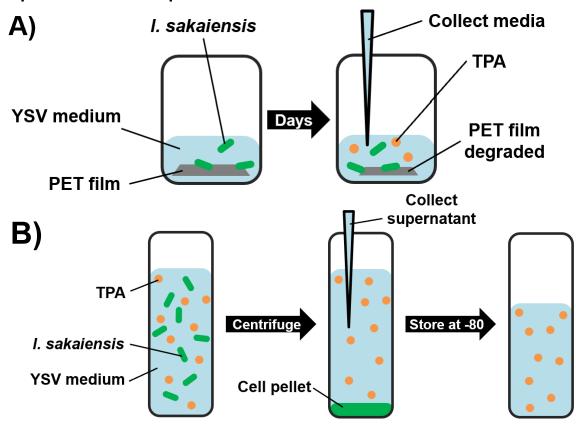

Lyophilized I. sakaiensis was inoculated in NBRC 802 (growth) medium and incubated at 30 or 37 °C for 4 days to determine optimal growth conditions.

- *I. sakaiensis* grows similarly at either 30 or 37 °C, with log phase occurring between 24-48 hours.
- *I. sakaiensis* incubated at 30 (upper) or 37 °C (lower) formed colonies that appeared white, circular, and slightly raised.

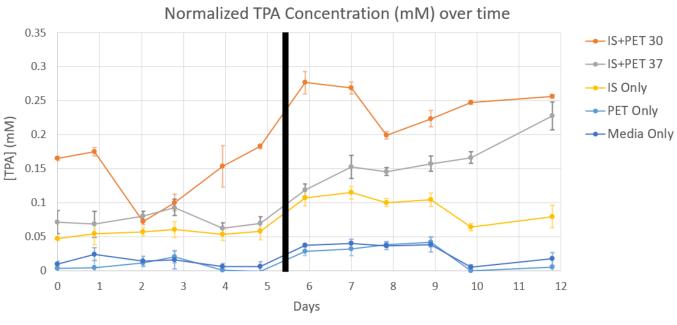
TPA Fluorescence Assay

TPA fluorescence standard curve was obtained by serially diluting TPA in YSV (minimal) medium and then reacting with FeSO₄ and EDTA for 15 minutes.

References


- Barreto, J. C., Smith, G. S., Strobel, N. H., McQuillin, P. A., & Miller, T. A. (1994). Terephthalic acid: a dosimeter for the detection of hydroxyl radicals in vitro. *Life* sciences, 56(4), PL89-PL96.
- Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., ... & Oda, K. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196-1199.

Justin Yang¹, Sarah Hoskinson², Hailey Brighton², Jason Somarelli^{2,3}, William Eward⁴


PET Hydrolysis by Ideonella sakaiensis

• I. sakaiensis was first grown in NBRC 802 medium for 1-2 days then transferred to YSV (minimal) medium spiked with a piece of PET film.

- The media was collected once per day (A). Then, it was • centrifuged and the supernatant containing TPA was stored at -80 °C until analysis (B).
- Five separate treatment groups were setup as follows.

Name	ldeonella sakaiensis?	PET film?	Temp (°C)	Expected [TPA]
IS+PET 30	Yes	Yes	30	More TPA over time
IS+PET 37	Yes	Yes	37	Low TPA over time
IS only	Yes	No	30	No TPA
PET only	No	Yes	30	No TPA
Media only	No	No	30	No TPA

The group where *Ideonella* was cultured with PET film at 30 °C showed increasing TPA over time, whereas control groups showed low background signal, suggesting PET was being hydrolyzed over time.