Gene Therapy in Alzheimer's Disease: Understanding the Role of **Apolipoprotein E in Late Onset Alzheimer's Disease**

Angela Wei^{1,2}, Dominic Tringali^{1,2}, Gabriella MacDougall^{1,2}, Ashley Kilgore^{1,2}, Ornit Chiba-Falek^{1,2}

¹Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; ²Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA

Background

What is Alzheimer's Disease (AD)?

- A progressive neurodegenerative disease that causes memory loss and cognitive decline
- Late onset Alzheimer's disease (LOAD) is the most common form (affects people ages 65 and older)
- Pathological hallmarks of AD are amyloid plaques and neurofibrillary tangles, associated with amyloid- β protein clustering and tau protein misfolding respectively

Why Study It?

- AD affects nearly 6 million people in the U.S. and is projected to affect 14 million by 2050
- Causative factors and the mechanism behind its onset and progression remain unknown; no cure currently exists

The APOE gene can modify your risk of developing Alzheimer's

- <u>APOE ε4 has been identified as the strongest and most</u> reproducible genetic risk factor for LOAD
- APOE has 3 protein variants (isoforms) that vary by a single • nucleotide in two possible positions in their DNA sequence, results in the coding of different amino acids in the protein

Isoform	Frequency	LOAD Risk	
ε4 (R112 <i>,</i> R158)	Less common (~14)	Higher (risk)	1 copy= 3- 4 x
			2 copies = 8-12 x
ε3 (C112 <i>,</i> R158)	Most common (~79)	Normal (neutral)	
ε2 (C112, C158)	Rare (~4)	Lower (resilience)	

Our Hypothesis

Impaired cellular Nuclear dysfunction

BASS CONNECTIONS **Brain & Society**