Treating Alzheimer's with Gene Therapy and the Ethical, Legal and Social Implications

BASS CONNECTIONS

Suraj Dhulipalla², Mohanapriya Cumaran², Cordelia Hume¹, Ishika Gupta³, Lilly Kelemen³, Sahil Malhotra², Suraj Upadhya¹, Satya Yalamanchi¹ Nathan Boucher³, Ornit Chiba-Falek¹, Boris Kantor²

¹Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center

²Center for Genomic and Computational Biology, Duke University Medical Center

³Sanford School of Public Policy, Duke University

Brain & Society

Introduction

- Alzheimer's disease (AD) is a progressive neurodegenerative condition that causes memory loss and cognitive decline
- AD currently affects 5.8 million Americans.
- Mechanisms and causes behind onset and progression remain unknown; no cure currently exists.
- E4 variant of APOE gene is the strongest reproducible genetic risk factor for LOAD, making it an ideal target for gene therapy

Identify and study high-risk variant functions & mechanisms

- Genome Wide Association Studies
- Polygenic risk score analysis
- Epigenetic and Gene Expression of APOE Region
- snRNA & scATTAC seq analysis
- Predict neuropsychiatric symptoms (e.g. depression) in AD patients using polygenic risk scores and methylation data

Mission: To develop an ethical disease modifying therapy (DMT) for late-onset Alzheimer's disease (LOAD) using gene therapy while considering legal and social effects

Develop novel CRISPR-Cas9 systems using viral vectors to repress APOE E4 expression

- Epigenetic Manipulations
- Development of effectors systems Editing

- Effectors transduced using AAV viral vector delivery
- Improve AAV packaging efficiency
 - Functionalize VP2 protein

Understand what clinicians think about future treatments for Alzheimer's Disease

- Semi-structured interviews with clinicians (MD, DO, PA, NP)
 - Establish understanding (of gene therapy)
 - Cost and access
 - Quality of life
 - Personal morals
- Qualitative analysis study
 - Recognize common observations
 - Identify the factors that cause disparity in diagnosis

Future Directions

- Utilize Cas9 variants to improve target specificity and offer more control of gene expression
- Understand the values of people living with dementia as treatments are developed
- Mulitomics analysis of APOE region for increasing understanding of molecular risk for LOAD

References

Yan et al., 2020; Li et al., 2019; Walter 2017; San-Juan-Rodriguez 2019; Yamazaki et al., 2017; Applied Sciences 2015; Zhu et al. 1019