Tracking Climate Change Using Satellites and Artificial Intelligence

Shufan Xia¹, Frankie Chiappetta², Margaret Brooks³, Alex Desbans⁴, Neel Gajjar³, Jules Kourelakos³, Saad Lahrichi⁵, Vaishvi Patel⁴, Ada Zhang³, Edna Zhang³ Advisors: Kyle Bradbury^{4,6}, Jordan Malof⁷ ¹The Graduate School, Duke University, ² Nicholas School of the Environment, Duke University, ³ Trinity College, Duke University, ⁴ Pratt School of Engineering, Duke University, ⁵ Duke Kunshan University, ⁶ Duke University Nicholas Institute for Energy, Environment & Sustainability ⁷Computer Science, University of Montana

Motivation

There is growing availability of remote sensing imagery, allowing tracking of climate causes and impacts. Artificial intelligence can help extract information from these images at scale.

Satellite images showing **deforestation** (light green on right) near a road in Peru tps://climate.nasa.gov/images-of-change/?id=812#812-deforestation-near-nueva-italia-peru

Satellite images showing catastrophic flooding (blue on right) in Pakistan ps://earthobservatory.nasa.gov/images/150279/devastating-floods-in-pakista

Challenges

- Data with labels (e.g. "river") are often unavailable / expensive
- Supervised learning, which uses labeled data, is difficult to scale up and apply across geographic regions without labeled data
- Existing state-of-the-art pre-trained models (trained on natural imagery) fail to adapt to unique characteristics of satellite images

2 Self-Supervised Learning (SSL)

SSL can use huge amounts of unlabeled data to learn, extracting robust image representations generalizable across geographic domains and tasks.

Supervised: huge expensive labeled data

Trained on small

labeled data

Results generalize well across domains and tasks

3 Creating a global dataset (GeoNet)

Self-supervised learning model performs best with a large and diverse dataset. We created this **10 million** satellite image dataset, GeoNet, the **first** and **largest** ever to capture geospatial, temporal, and semantic diversity for remote sensing data.

Sample Distribution: number of images per ~ 50 km² area

We tested self-supervised pretraining on GeoNet with 5 benchmark datasets, and found our method outperforms competing methods for 3 out the 5 benchmark datasets.

Pretraining using the SSL technique requires no labels, making it a promising and enabling technology for scaling up analyses of global changes to the environment.

Benchmark datasets

Binary segmentation: SustainBench - field delineation (Yeh et al., 2021)

Multi-class segmentation: Deepglobe - land cover classification (Demir et al., 2018)

Multi-class "weak label" segmentation: SEN12MS (Schmitt et al., 2019)

Multi-class classification: EuroSat - land cover classification (Helber et al., 2019)

Multi-label classification: BigEarthNet (Sumbul et al., 2019)

For more information and our full 5 results, visit our website

https://bassconnections-edal-22-23.github.io/

BASS CONNECTIONS

Energy & Environment

4 Applying SSL to inference tasks

Input Image

Prediction

"Residential"

"Non-irrigated arable land, Pastures"

