Predictive Modeling for Decision-making in Public Health

BASS CONNECTIONS

RESEARCH BACKGROUND

LIMITED PUBLIC HEALTH BUDGET

Best **INTERVENTIONS?**

COST-EFFECTIVENESS STUDIES

AIMS OF OUR BASS TEAM

MAIN OBJECTIVE: provide public health practitioners and policy makers with a user-friendly tool supporting Cost-Effectiveness Analysis (CEA) THROUGH

> INTERDISCIPLINARY RESEARCH: join efforts from computer engineering, global health and public policy, from Duke and from DKU FOR DESIGNING

> **A DOMAIN SPECIFIC LANGUAGE:** specify and execute CEA, using a solid modeling formalism called Stochastic Reward Nets (SRNs)

PROJECT ACTIVITIES

- Group-study on CEA and SRNs
- Made learning materials for CEA method
- Developed simplified how-to for SPNP tool

Literature review on CEA papers

- Conducted case study on papers using CEA
- Translated the model from DTMC into SRN

Practice using SPNP

- Replicated the paper using SPNP tool
- Compared the results with the original one

Mapping CEA into SPNP

- Broke down CEA into separate steps
- Linked the steps with features of SPNP

Design on DSL

- Identified concepts to define in DSL
- Listed attributes for each concept from CEA •

Test on real cases

- Conducted literature review on CEA papers
- Fitted the existing research with our DSL

</> To-do: Code into DSL

- Program the DSL based on SPNP tool
- Test and improve using more cases

Affiliation: 1 Duke Kunshan University, 2 Duke Global Health Institute, 3 Pratt School of Engineering, 4 Duke University Graduate School, 5 Sanford School of Public Policy

Acknowledgments: The BASS project team acknowledges the contributed to the project in Q3 2022: Yuan Li (DKU), Andrew Sun (Duke), Monica Macheca (Duke), Wanqi Hu (DKU), Luke Zhuo (Duke)

Ivan Mura¹, Meifang Chen¹, Truls Ostbye², Kishor Trivedi³, Shruti Pandey⁴, Shuyi Qiu⁵, Xueting Li¹, Haowen Ji¹, Zhexu (Alex) Jin¹

YSIS	(CEA)

	S	Т	D
S	$1 - p_{SD} - p_{ST}$	p_{ST}	p_{SD}
T	0	$1 - p_{TD}$	p_{TD}
D	0	0	1

COST (\$)	BENEFIT (QALYs)
C_S	B _S
C_T	B _T
C_D	B _D

Effectiveness	Incremental cost per QALY gained
E_1	Reference group
E_2	$\frac{C_2 - C_1}{E_2 - E_1}$
E ₃	$\frac{C_3 - C_1}{E_3 - E_1}$

HIDING COMPLEXITY: A LANGUAGE TAILORED TO CEA STUDIES

> STUDY OVERVIEW

- Discount rate

> CONDITION

- individuals and possible evolutions

> INDIVIDUALS

- Attributes: Number, Genders, Ages...

> **GROUPS**

- Attributes: Group name, Composition

> INITIAL CONDITIONS

- **Attributes:** Group names, number, percentages

> **INTERVENTION**

> COST

- and specify the frequency of cost accrual
- Attributes: Name, Amount, Accrued

> UTILITIES & BENEFITS

- Attributes: Name, On state, Value, Accrued

> **METRICS**

- **Purpose:** define quantities to be evaluated
- **Attributes:** Name, Evaluation Rules, such as: - count < health states> for <treatment>

> ANALYSIS

- Attributes: Name, Parameters, Metric, Algorithm

> **REPORT**

- **Purpose:** specify the output to be generated

DEFINITION OF KEY CONCEPTS

- outcomes of candidate health interventions

DOMAIN SPECIFIC LANGUAGE (DSL)

Purpose: provide a summary description of the study Attributes: References, Main objective, Perspective, Place, Time horizon,

Purpose: define the health issue object of the study, the health states of Attributes: Name, Health states, Transition, Revision Period

Purpose: define the characteristics of individuals in the study

Purpose: define sub-groups to provide shorthand notation

Purpose: assign individuals to health states at time t = 0

Purpose: define actions aimed at improving the condition of patients Attributes: Name, Treatment, Subjects, Period, Cost, Value

Purpose: name cost elements defined by users, assign monetary values

Purpose: assign value of intervention effects to each state

- accumulate <quantity> on <health states> for <treatment>

Purpose: specify the parameter for sensitivity analysis

Attributes: Metrics, Analysis, Formats = table/line/histogram/bars

Cost-Effectiveness Analysis (CEA): a formalized process to comparatively evaluate both the costs and

* Stochastic Reward Nets (SRN): a probabilistic modeling formalism supporting definition of structural and timing behavior of the system, as well as the specification of the measures to be computed **Stochastic Petri Net Package (SPNP)**: Tool developed by Prof. Trivedi to define and analyze SRN models **Domain Specific Language (DSL)**: Computer language specialized to a particular application domain