Domain Specific Language (DSL)

Hiding Complexity: A Language Tailored to CEA Studies

- **Purpose**: Provide a summary description of the study
- **Attributes**: References, Main objective, Perspective, Place, Time horizon, Discount rate

Condition

- **Purpose**: Define the health issue object of the study, the health states of individuals and possible evolutions
- **Attributes**: Name, Health states, Transition, Revision Period

Individuals

- **Purpose**: Define the characteristics of individuals in the study
- **Attributes**: Number, Genders, Ages...

Groups

- **Purpose**: Define sub-groups to provide shorthand notation
- **Attributes**: Group name, Composition

Initial Conditions

- **Purpose**: Assign individuals to health states at time t = 0
- **Attributes**: Group names, number, percentages

Intervention

- **Purpose**: Define actions aimed at improving the condition of patients
- **Attributes**: Name, Treatment, Subjects, Period, Cost, Value

Cost

- **Purpose**: Name cost elements defined by users, assign monetary values and specify the frequency of cost accrual
- **Attributes**: Name, Amount, Accrued

Utilities & Benefits

- **Purpose**: Assign value of intervention effects to each state
- **Attributes**: Name, Treatment, Subjects, Period, Cost, Value

Metrics

- **Purpose**: Define quantities to be evaluated
- **Attributes**: Name, Evaluation Rules, such as:
 - accumulate <quantity> on <health states> for <treatment>
 - count <health states> for <treatment>

Analysis

- **Purpose**: Specify the parameter for sensitivity analysis
- **Attributes**: Name, Parameters, Metric, Algorithm

Report

- **Purpose**: Specify the output to be generated
- **Attributes**: Metrics, Analysis, Formats = table/line/histogram/bars

Definition of Key Concepts

- **Cost-Effectiveness Analysis (CEA)**: A formalized process to comparatively evaluate both the costs and outcomes of candidate health interventions
- **Stochastic Reward Nets (SRN)**: A probabilistic modeling formalism supporting definition of structural and timing behavior of the system, as well as the specification of the measures to be computed
- **Stochastic Petri Net Package (SPNP)**: Tool developed by Prof. Trivedi to define and analyze SRN models
- **Domain Specific Language (DSL)**: Computer language specialized to a particular application domain

Predictive Modeling for Decision-making in Public Health

Ivan Murá1, Meifang Chen1, Truls Ostbye2, Kishor Trivedi2, Shruti Pandey4, Shuyi Qiu1, Xueting Li1, Haowen Ji1, Zhexu (Alex) Jin1

Affiliation: 1 Duke Kunshan University, 2 Duke Global Health Institute, 3 Pratt School of Engineering, 4 Duke University Graduate School, 5 Sanford School of Public Policy

Acknowledgments: The BASS project team acknowledges the contribution of the Duke and DKU students that have contributed to the project in Q3 2022: Yuan Li (DKU), Andrew Sun (Duke), Monica Macheca (Duke), Wanqi Hu (DKU), Luke Zhuo (Duke)

Research Background

- **Aims of Our BASS Team**
 - **Main Objective**: Provide public health practitioners and policy makers with a user-friendly tool supporting Cost-Effectiveness Analysis (CEA) through Interdisciplinary research: Join efforts from computer engineering, global health and public policy, from Duke and from DKU
 - **A Domain Specific Language**: Specify and execute CEA, using a solid modeling formalism called Stochastic Reward Nets (SRNs)

Project Activities

- **Background Knowledge**
 - Group study on CEA and SRNs
 - Conducted case study on papers using CEA
 - Translated the model from DTMC into SRN

- **Case Studies**
 - Conducted literature review on CEA papers
 - Compared the results with the original one

- **Applications in SPNP**
 - Practice using SPNP
 - Fixed the existing research with our DSL

- **Concept Transfer**
 - Mapping CEA into SPNP
 - Breaked CEA into separate steps

- **DSL Concept Construction**
 - Design on DSL
 - Listed attributes for each concept from CEA

- **Real Case Application**
 - Conducted literature review on CEA papers
 - Fitted the existing research with our DSL

- **DSL Tool Coding Work**
 - Program the DSL on SPNP tool
 - Test and improve using more cases

Stochastic Reward Nets (SRNs)

Our Choice for Predictive Modeling

- **Basic Components of SRN models**
- **Input Place**
- **Transition (event)**
- **Output Place**
- **Input Arc**
- **Output Arc**

Advantages of SRNs

- Better abstraction, closer to the domain than Markov chains
- Easier to define models for large and complex systems
- Easier to solve analytically
- Natively incorporate the concepts of costs and benefits
- Able to study the dynamic behavior of the system
- SPNP tool available from Duke

STOCHASTIC REWARD NETS (SRNS)

Our choice for predictive modeling

A simplified example to compare T_1, T_2, T_3:

Purpose

- Specify the output to be generated

References

- Name, Evaluation Rules, such as:
 - accumulate <quantity> on <health states> for <treatment>
 - count <health states> for <treatment>

Analysis

- Specify the parameter for sensitivity analysis

Attributes: Name, Parameters, Metric, Algorithm

Cost

- Name cost elements defined by users, assign monetary values and specify the frequency of cost accrual

Utilities & Benefits

- Assign value of intervention effects to each state

Attributes: Name, Treatment, Subjects, Period, Cost, Value

Metrics

- Define quantities to be evaluated

Attributes: Name, Evaluation Rules, such as:
 - accumulate <quantity> on <health states> for <treatment>
 - count <health states> for <treatment>

Groups

- Define sub-groups to provide shorthand notation

Attributes: Group name, Composition

Initial Conditions

- Assign individuals to health states at time $t = 0$

Attributes: Group names, number, percentages

Intervention

- Define actions aimed at improving the condition of patients

Attributes: Name, Treatment, Subjects, Period, Cost, Value