Background

Over 70% of rural Ethiopia lacks access to energy. The Ethiopian government aims to achieve universal electricity access by 2025 through their National Electrification Plan.

Solar mini-grids may offer a promising solution to facilitate universal energy access and a reliable source of power for irrigation needs of over 75% of the Ethiopian workforce with agriculture-dependent livelihoods.

Our Approach

Working in collaboration with stakeholders including the Ethiopian Ministry of Water, Irrigation, and Energy, we analyzed 10 pilot sites in Ethiopia to determine if mini-grid powered irrigation generates enough energy demand to make it economically viable, while maintaining sufficient water stock at the site for long-term sustainability.

Our Findings

Major factors of mini-grid attractiveness are:
1. Higher fruit crop distribution
2. Groundwater recharge rates exceed groundwater pumping
3. Larger average farm size

A further consideration is the type of irrigation:
1. Drip irrigation can improve attractiveness especially for sites with fruit cultivation
2. Decentralization improves net benefits for most sites

Analysis Framework

Economic Viability

Net Benefit = (Savings from switching from diesel) + (Additional crop value from increased water pumping capacity) - (Cost of electric irrigation)

Resource Sustainability

We developed a groundwater suitability index as a relative measure of groundwater recharge, which is the rate groundwater is replenished from rainfall or surface water.

Acknowledgments: We would like to thank our partners at the Ethiopian Ministry of Water, Irrigation and Energy, Rockefeller Foundation, Rocky Mountain Institute, Ethiopian Agricultural Transformation Agency, Haramaya University, African Development Fund, Veritas Consulting, AMDA, and RTI International for their support and helping to make this research possible.