Constructing Cloud-based Infrastructure for COVID-19 Data

Qi Xuan Khoo² Yvonne Kuo²,Tommy Tseng³,Amrita Lakhanpal², Sean Fiscus², Peter Cho¹, Md Mobashir Hasan Shandhi¹, Ali Roghanizad¹, Jessilyn Dunn¹

Affliations: I. Department of Biomedical Engineering 2. Department of Computer Science & Economics 3. Department of Data Science

Pipeline Team Achievements

- Established third-party Garmin and Fitbit API connection; published our Fitbit OAuth 2.0 guideline on Medium (QR code)
- Automated API requests, data transformation with Azure API Management, Logic Apps & proprietary Javascript code

- Transformed data stored in desired csv format as Blob files
- Pipeline output: heart rate, steps,
 sleep activity data

Moving Forward

- Architect a sustainable cloud-based infrastructure that builds on the current pipeline for future studies
- Migrate retrospective participant data to the cloud

COVIDENTIFY -

In April 2020, the BIG IDEAs Lab launched the Covidentify study to develop an **early detection model for SARS-CoV-2** based on wearables data. To set the stage for future studies and to extract actionable insights from the collected data, our team aimed to develop:

- A scalable data pipeline that extracts, transforms and stores data via third-party wearables API for research (*Pipeline Team*)
- A data visualization dashboard that offers insights into survey completion and adherence (*Dashboard Team*)

Project Workflow

External API Cloud Infrastructure

Project Significance

- One of the first labs at Duke to work with personally identifiable information on Azure cloud platform—an important step for data security and scalability
- Submitted "A Method for Intelligent Allocation of Diagnostic Testing by Leveraging Data from Commercial Wearable Devices: A Case Study on COVID-19" paper for publication to Nature Medicine

Dashboard Team Achievements

 Utilized k-means clustering and calculated adherence rates to generate heat maps in an effort to understand survey completion rate

- Performed Cox regression analysis to identify significant demographic association with survey adherence rates
- Generated a **real-time dashboard** to visualize survey completion data and gain insight into future behavior

Moving Forward

- Track real-time survey updates for monitoring individuals with symptoms or positive diagnostic testing
- Improve dashboard interactions for informing researchers and general public