

degraders in the lab

Scanning electron microscope images (5000x magnification) of PET incubated with bacteria for Halos around the *P. stutzeri* colonies show degradation of the polymers, 1 month show that *P. stutzeri* does not degrade PET but deposits debris on the plastic surface. Impranil and polycaprolactone (PCL), in these plate clearing assays⁴.

Plastic pollution: Understanding threats to human health & bioremediation strategies

Laney Chang¹, Rita Glazer¹, Ella Gunady², Sage Hirschfeld², Alexander Hong¹, Jas Santos³, Sophie Vincoff², Jenny Yoon¹ ¹Trinity College of Arts & Sciences, ²Pratt School of Engineering, ³Duke Kunshan University

1. Plastics and their additives are potentially harmful to human health

B. Liver cells can internalize nanoplastics

Based on biological effects, additives break into three distinct clusters with nearidentical distributions of carcinogens and unclassified chemicals.

2. Our team is discovering new plastic-degrading bacteria and improving the efficiency & thermostability of existing plastic degraders

Control: Liver cells not exposed to plastic

> Liver cells exposed to plastic

Lower layer

Middle laver

C. We are developing a thermostable plastic degrader to enable bioremediation at high temperatures.

cut190 = heat-stable PET-degrading enzyme⁵ T. thermophilus = thermophilic bacterium

T. therm no antibiotic

Future Directions:

• Identify new plastic-degrading bacteria for other plastic types (PS, HDPE, LDPE, PVC, and PP)

• Improve the efficiency of natural plastic degraders

Utilize directed evolution to generate novel strains with enhanced ability to degrade plastic Increase temperature range at which degradation

is possible

Bass Connections in Energy & Environment

Upper layer

C. Macrophages phagocytose nanoplastics

Liver cells likely internalize plastic as demonstrated by the absence of fluorescent signal within the cells (red arrows).

- **Blue signaling** = cell nucleus
- Green signaling = cell cytoplasm
- Human macrophages phagocytose nanoplastics, causing a pH-sensitive red dye (RFP) to fluoresce.
- When exposed to greater amounts of plastic, fluorescent signal increased, indicating a correlation between rate of phagocytosis and quantity of plastic.

T. therm

with antibiotic

T. therm + cut190 with antibiotic

Antibiotic resistance shows transformation success.

References:

