Environmental Justice and the Early-Life Origins of Health Disparities: Why Mom Matters

Tania Hassanzadeh Dominic Le Bailey Ryan

Bass Connections: Brain and Society, Summer 2013
Mentors:

Dr. Staci Bilbo, Psychology and Neuroscience Dr. Richard Auten, Department of Pediatrics Dr. Leigh Ann Simmons, School of Nursing

Background: Poor Living Conditions and Low Socioeconomic Status

- Problems in our society: air pollution, stress, poor nutrition
- Why should we care about perinatal programming?
- What is psychoneuroimmunology, and how does it fit into the picture?

Microglia

ROUND STOUT THICK THIN

Immune System in Brain Development

- Normal development depends on immune signaling
 - Synaptic pruning
 - Adult neurogenesis

 Perinatal "sensitive period" to immune effects on CNS development

Bilbo & Schwarz, 2009

Prenatal Air Pollution Study: Design & Notable Findings

- Two-by-two design
- First level: treatment of pregnant moms with vehicle (control solution) or diesel exhaust particle during pregnancy
- Second level: maternal nest restriction (inducing stress) or postnatal dietary manipulation
 - Prenatal diesel exposure + postnatal dietary manipulation
 - Low-fat vs. high-fat postnatal diet
 - Prenatal diesel exposure + maternal stress during pregnancy
 - Nest restriction (NR) paradigm
 - *Male, DE/NR offspring upregulate TLR4 expression

Prenatal Air Pollution Study: Current Project

• Purpose:

- 1) To investigate whether microglial TLR4 expression is necessary for activation in response to prenatal diesel exposure
- 2) To explore the interaction between prenatal diesel treatment, adult infection, sex, and genotype (TLR4 +/- or -/-) with respect to microglial expression

Experimental Paradigm

Cell counting and volumetric analysis: example contour in E18 parietal cortex

E18 Amygdala vs. Parietal Cortex:Regional Volume Differences

E18 Amygdala vs. Parietal Cortex: Microglial Morphology

E18 Amygdala: DEP, TLR4 +/- males express significantly more quiescent microglia than DEP, TLR4 -/- males

Significant DEP x genotype x sex interaction for males

E18 Parietal Cortex: No significant difference in number of cells of any cell type due to sex

E18 Parietal Cortex: No significant difference in number of cells of any cell type due to genotype

E18 Parietal Cortex: DEP, TLR4 +/- males express significantly more round microglia than DEP, TLR4 -/- males

Significant DEP x genotype interaction for males Females show trend for main effect of diesel

What does this all mean?

- 1. Differences in regional volume
- This suggests variations in synaptic pruning due to the diesel treatment
- Relation to autism?
- 2. Differences in morphology
- This suggests either a difference in microglial maturation and/or activation by prenatal diesel exposure
- 3. TLR4 mediates diesel effect
- 4. Males are more vulnerable
- Consistent with previous studies

Future Directions

- Currently: quantifying microglial morphology in the E18 hippocampus
- Future: doing the same in parietal cortex and hippocampus of adult cohort
 - How does the immune challenge affect microglial morphology?
 - Will females be more vulnerable than males?
- Afterward: examine how maternal obesity in conjunction with an LPS challenge affects microglial expression and morphology in offspring parietal cortex and hippocampus

Maternal Obesity

- Causes
 - Genetics
 - Metabolic
 - Lifestyle
- Effects
 - Mother
 - Child

Branched-Chain Amino Acids

- Elevated in obesity
- Correlate with metabolic problems
- Interfere with brain Trp levels
 - Mood disorders

Weight Gain

Significant main effect of HFD, *p*<0.05 † Significant main effect of BCAA, *p*<0.05

Significant main effect of HFD, *p*<0.05 † Significant main effect of BCAA, *p*<0.05

Pre-Pregnancy Behavioral Testing

Fig. 2a-c. Photographs of a the zero-maze apparatus, b a rat head-dipping over the edge of the zero-maze platform, c a rat exhibiting the stretched attend posture

Zero Maze

Time in Closed Arms

Significant main effect of HFD, *p*<0.05

Open Field

Distance Traveled

Time in Surround

Percent of Distance

Metabolic Markers

Fasting Blood Glucose

Discussion

No strong effect of pre-pregnancy diet alone

- Behavioral, metabolic, endocrine changes during pregnancy may interact with diet
 - Post-partum depression
 - Gestational diabetes

Moms

What's next?

Pup plasma and brains (P1, P8)

Early postpartum plasma
and brains (P8)

Mom and adult offspring plasma and brains

__ P30 Offspring _____
(fed normal diet)

Maternal care observation

Postpartum anxiety, activity and depressive behavior testing

Offspring anxiety and memory testing

Maternal obesity study: from a clinical perspective

- Purpose: to investigate the effect of weight gain and nutrition during pregnancy on the incidence of post-partum depression
- Methods:
 - We will pre-screen potential candidates, who are women who have just given birth
 - Recruited moms' blood will be drawn a couple of days after child's birth and several months later
 - Will be analyzed for 5-HT and BCAA levels
 - Behavioral assessment of post-partum depression
 - Moms can elect to receive (long-term) health counseling

Acknowledgements

We thank:

- Bass Connections program and Bass family
- Our mentors: Jessica Bolton, Drew Day, and Christine Belliveau
- Dr. Nicole Schramm-Sapyta
- Dr. Staci Bilbo, Dr. Richard Auten, and Dr. Leigh Anne Simmons