Genomic Analysis of Virulence Factors of Burkholderia cenocepacia

Noelle Garbaccio, Othmane Jadi, Malcolm McDonald, Alex Shang, Henry Taylor, Austin Zhang, Greg Wray^{1,2}

Bass Connections in Information, Society, & Culture

¹Duke University Department of Biology. ²Duke Center for Genomic and Computational Biology

Introduction

Cystic Fibrosis (CF)

- Autosomal recessive genetic disorder caused by mutated CFTR gene
- Abnormally thick and sticky mucus clogs the airways, leading to difficulty breathing, respiratory infections, and permanent lung damage
- High risk of frequent onset of opportunistic infections
- Prevalent infectious agents: Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia cepacia

Lung Transplants: Life-Saving Therapy

- Transplant centers refuse to perform transplants for patients infected by B. cenocepacia due to high morbidity rates
- Post-op immunosuppressants increase risk for infections caused by bacteria occupying airways
- In a study of CF patients who underwent lung transplantation, 75% of Burkholderia cenocepacia-infected individuals died within the first year²
- Sepsis due to B. cenocepacia is the cause of death in 89% of cases²

Efflux Pump Gene

- Efflux pumps are a common mechanism for multidrug antibiotic resistance
- RND Channels 3, 4, 9, and 10 and their regulators were analyzed

Quinolone Resistance Gene

- Quinolone antibiotics treat nosocomial infections by preventing DNA ligation using 2 DNA repair proteins: gyrase and topoisomerase
- Mutations in the gyrase and topoisomerase genes are thought to inhibit quinolones interaction, promoting multidrug resistance

Psl Gene Family

- Encodes exopolysaccharide responsible for bacterial biofilm formation
- Biofilms allow development and proliferation of bacteria in thick mucus layers in lungs

Limitations

- Samples lacked correlating clinical data, obscuring the relationships of PCA clusters to specific clinical outcomes
- Clinical DNA samples could not be relocated for further sequencing analysis

- The data is inconclusive until clinical data is obtained.
- There are promising results in the consistent clustering of sample
- Between Efflux pumps and Quinolone Resistance samples: 1,2,3, 4, 5, 10 and 6 clustered together

Future Directions

- Obtain clinical data to determine relationships between PCA clusters and specific clinical outcomes.
- Conduct multidrug resistant assays on all clinical samples
- Run PCR to confirm the presence of selected genes in patient samples
- Sequencing of PCR amplified virulence genes from patient samples to analyze for mutations
- Query raw sample reads against B. cenocepacia to investigate the presence of genes at low read count

References

- 1. Gómez, M. I. & Prince, A. Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr. Opin. Pharmacol. 7, 244–251 (2007). 2. De Soyza, A. et al. Lung transplantation for patients with cystic fibrosis and Burkholderia cepacia complex infection: a single-center experience. J. Heart Lung
- 3. Drevinek, P. & Mahenthiralingam, E. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin. Microbiol. Infect.
- 4. The Burkholderia Genome Database Genome annotation and comparative genome analysis. Available at: http://burkholderia.com/. (Accessed: 11th December
- 5. Priyam, A. et al. Sequenceserver: a modern graphical user interface for custom BLAST databases. (2015). doi:10.1101/033142 6. Fassler, J. & Cooper, P. BLAST Glossary. (National Center for Biotechnology Information (US), 2011).
- 7. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 284, 1318–1322 (1999). 8. Cescutti, P., Foschiatti, M., Furlanis, L., Lagatolla, C. & Rizzo, R. Isolation and characterisation of the biological repeating unit of cepacian, the
- exopolysaccharide produced by bacteria of the Burkholderia cepacia complex. Carbohydr. Res. 345, 1455–1460 (2010). Respectively: Role in Exopolysaccharide Biosynthesis and Biofilm Formation. Appl. Environ. Microbiol. 73, 524-534 (2007).

Methods

- 21 samples of B. cenocepacia collected and sequenced from CF patients who underwent lung transplantation (Duke University Hospital)
- Literature review to developed a targeted list of putative virulence genes
- Custom BLAST to analyze sequences for presence of targeted genes
- PCA and K-means clustering analysis on BLAST results from targeted genes for each sample and identification of subsequent clusters