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What can an image 
tell us about our 
energy consumption?
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Governments and 
policy makers
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Governments and 
policy makers

Businesses and 
NGOs
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Governments and 
policy makers
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Our Process
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From a high 
resolution aerial 
image…
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Detect building 
outlines and 
calculate their area
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Use area of 
detected buildings 
for energy use 
estimation
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Approach 1:
Random Forests

Approach 2: 
Convolutional Neural Network 
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Approach 1:
Random Forests

Approach 2: 
Convolutional Neural Network 

Evaluate and 
Compare Results
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Approach 1:
Random Forests

Approach 2: 
Convolutional Neural Network 

Evaluate and 
Compare Results

Select Building 
Detection 
Approach
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How Can We “Teach” a Computer?

Learning 
Algorithm

(Random Forest)

Detected 
Buildings

Feature Extraction Classification

Approach 1:  Classical Machine Learning
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Approach 1:  Classical Machine Learning

Features:
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Approach 1:  Classical Machine Learning

Features:

§ Color Data (HSV)
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Approach 1:  Classical Machine Learning
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Approach 1:  Classical Machine Learning

Features:

§ Color Data (HSV)

§ Edges (Gradient)

§ Variation in Pixels (STDev)

§ Texture (Entropy)



27

Approach 1:  Classical Machine Learning

Features:

§ Color Data (HSV)

§ Edges (Gradient)

§ Variation in Pixels (STDev)

§ Texture (Entropy)

§ Vegetation Detection (NDVI)



YES NO

Color?

Shape?

Texture?

Rectangular Non-
Rectangular

Coarse
Smooth

Gray Green

YES NO

NO

NO

Approach 1:  Classical Machine Learning

Decision Tree:

Question: Is the pixel part of a building?

Answer: 

28



29

Approach 1:  Classical Machine Learning

Random Forest

YES YES YESNO NO

YESVote = 

Input Pixel
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Approach II:  Convolutional Neural Network
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Approach II:  Convolutional Neural Network
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Approach II:  Convolutional Neural Network
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Neural Network vs. Random Forest Classifier

Features?

Time?

Approach II:  Convolutional Neural Network
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Building
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Building

Car

Pool
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Our Neural Network: Overview

Adapted From: https://www.mathworks.com/help/nnet/convolutional-neural-networks.html

Approach II:  Convolutional Neural Network

building
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Comparing Approaches:

Ground truth building outlines, 
i.e., the ideal classification output

Building outlines detected by 
random forest classification

Building outlines detected by 
convolutional neural network
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Comparing Approaches:

Ground truth building outlines, 
i.e., the ideal classification output

Building outlines detected by 
random forest classification

Building outlines detected by 
convolutional neural network

Misclassified building pixel 
"islands"
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Comparing Approaches:

Ground truth building outlines, 
i.e., the ideal classification output

Building outlines detected by 
random forest classification

Building outlines detected by 
convolutional neural network

Irregular edges & merged 
buildings
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Comparing Approaches:
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Our Process
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How good is the model?
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How good is the model?



Actual Buildings and 
Energy Consumption

Number of Buildings

Average Energy Use 
(kWh/yr)

Total Energy 
Estimation Error (%)

388

10,237

-



Actual Buildings and 
Energy Consumption

Actual Buildings and 
Estimated Energy Consumption

Number of Buildings

Average Energy Use 
(kWh/yr)

Total Energy 
Estimation Error (%)

388

10,237

-

388

11,977

17%



Actual Buildings and 
Energy Consumption

Actual Buildings and 
Estimated Energy Consumption

Detected Buildings and 
Estimated Energy Consumption

Number of Buildings

Average Energy Use 
(kWh/yr)

Total Energy 
Estimation Error (%)

388

10,237

-

388

11,977

17%

299

12,405

-7%
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Conclusion

From a high 
resolution aerial 
image…
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Conclusion

From a high 
resolution aerial 
image…

Detect building 
outlines and 
calculate their area
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Conclusion

From a high 
resolution aerial 
image…

Detect building 
outlines and 
calculate their area

Use area of 
detected buildings 
for energy use 
estimation
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Conclusion

Scale up to gather this 
data for whole cities, with 
thousands of buildings, 
anywhere in the world! 



Solving Murders!













And even winning 
awards for presenting!
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THANK  YOU


