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Input Data

From a high
resolution aerial
image...
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Building Detection Model

Detect building
outlines and
calculate their area

421117 °




Input Data

Building Energy
Consumption Survey Data

Available

Energy

Estimation Model

Data

Energy Use Estimation

Height
(LIDAR)

Land & House Value
(Tax Data)

House Age & Materials
(Commercial Database)

v

Unavailable

Consumer Preference & Plug-in Loads
(Household Survey)

=)

Multiple Linear
Regression Model

L

Household Energy
Consumption Estimate
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Prediction

Building Energy Use
(yearly kWh)
| <12,000
[ 12,000 - 13,000
| 13,000 - 14,000
| 14,000 - 15,000
| 15,000 - 16,000
I 16,000 - 17,000
* I 17,000 - 18,000
: I 13.000 - 19,000
t 4 I - 0.000

Use area of
detected buildings
for energy use
estimation
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Output

Building-level
Energy Usage

Building Energy Use
(yearly kWh)

| <12,000

| 12,000 - 13,000
| 13,000- 14,000
| 14000- 15,000
[T 15,000 - 16,000
I 16,000 - 17,000
I 7.000 - 18,000
I 18.000 - 19,000

I -19.000
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Building Detection Model
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Building Detection Model

Approach |:
Random Forests

Approach 2:
Convolutional Neural Network
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Building Detection Model

Approach |:
Random Forests

Evaluate and
Compare Results

Approach 2:
Convolutional Neural Network
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Building Detection Model
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Approach |: Classical Machine Learning

How Can We “Teach” a Computer?

i Learnin ' i
Feature Extraction g Classification Detected

Buildings

Algorithm
(Random Forest)
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Approach |: Classical Machine Learning

Original Image
T T

Features:
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Approach |: Classical Machine Learning

HSV Filter

Features:

= Color Data (HSV)
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Approach |: Classical Machine Learning

HSV Filter Gradient Filter
Features:

= Color Data (HSV)

= Edges (Gradient)
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Approach |: Classical Machine Learning

HSV Filter Gradient Filter
Features:

= Color Data (HSV)

= Edges (Gradient)

= Variation in Pixels (STDev)

Standard Deviation Fiiter
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Approach |: Classical Machine Learning

HSV Filter Gradient Filter
Features:

= Color Data (HSV)

Edges (Gradient)

Variation in Pixels (STDev)

Standard Deviation Filter

Entropy Filter

Texture (Entropy)
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Approach |: Classical Machine Learning

HSV Filter Gradient Filter
Features:

= Color Data (HSV)

= Edges (Gradient)

" Variation in Pixels (STDev)

Standard Deviation Filter NDVI Filter

Entropy Filter

= Texture (Entropy)

= Vegetation Detection (NDVI)
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Approach |: Classical Machine Learning

Shape?

Decision Tree: / \

Rectangular
Question: Is the pixel part of a building? ’ Non-
Rectangular

Answer: Texture!? \
Gaithe

Smooth

4
A

Color?

Y \

Gray

4

Coarse
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Approach |: Classical Machine Learning

Random Forest

Vote = YES 42117 6



Approach ll: Convolutional Neural Network
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Approach ll: Convolutional Neural Network
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Approach ll: Convolutional Neural Network
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Approach ll: Convolutional Neural Network

Neural Network vs. Random Forest Classifier

Features?

Time!?
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Approach ll: Convolutional Neural Network

Our Neural Network: Overview
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Probability

Building

'

RelU
rectified linear units

softmax

categorical probability distribution

e

complex shapes shapes that can be
used to define a building

o P :
- . FC FC

Filters 3 ‘
light and dark R snts T R - :
Every feature map output is the ‘

result of applying a filter to the image
The new feature map is the next input

R

Activations of the network at a particular ch

~——
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Adapted From: https://www.mathworks.com/help/nnet/convolutional-neural-networks.html



Comparing Approaches

4721717

Building outlines detected by
convolutional neural network

Building outlines detected by
random forest classification

the ideal classification output

Ground truth building outlines

i.e.



Comparing Approaches:

Ground truth building outlines, Building outlines detected by Building outlines detected by
i.e., the ideal classification output random forest classification convolutional neural network

Misclassified building pixel
"islands”
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Comparing Approaches:

Ground truth building outlines, Building outlines detected by Building outlines detected by
i.e., the ideal classification output random forest classification convolutional neural network

Irregular edges & merged
buildings

421117 6



Comparing

Approaches:

ROC
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Probability of Detection
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0 0.2 0.4

0.6 0.8 1
Probability of False Alarm

wen CNN, AUC = 0.899
e Random Forest, AUC = 0.841
s |deal, AUC = 1

false negatives

@® Building pixels
O Non-building pixels

Probability of Detection  Probability of False Alarm
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is the model?
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is the model?
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Actual Buildings and
Energy Consumption

- e '. -."l" g e ¢
P PR

Household Energy e W -
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Yearly Consumption 1 e L — ]
(kWh) '

| <10,000

| 10,000- 11,000
| 11,000- 12,000
I 12,000 - 13,000
I 13.000 - 14,000
I >14.000

Number of Buildings 388

Average Energy Use

Total Energy
Estimation Error (%)



Actual Buildings and Actual Buildings and
Energy Consumption Estimated Energy Consumption

T

Household Energy

Yearly Consumption
(kWh)

| <10,000

| 10,000- 11,000
[ 11,000 - 12,000
I 12,000 - 13,000
I 13.000 - 14,000
I >4.000

Number of Buildings 388 388

Average Energy Use
(kWhlyr) 10,237 11,977

Total Energy 17%
Estimation Error (%) °



Actual Buildings and Actual Buildings and Detected Buildings and
Energy Consumption Estimated Energy Consumption Estimated Energy Consumption

P a0 i B af B

) *‘

Household Energy

Yearly Consumption
(kWh)

| <10,000

| 10,000- 11,000
[ 11,000 - 12,000
I 12,000 - 13,000
I 13.000 - 14,000

I >14.000
Number of Buildings 388 388 299
A E U
lowniyn 10,237 11,977 12,405
Total Energy ) 17% -7%

Estimation Error (%)



Conclusion

From a high
resolution aerial
image...
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Conclusion

From a high Detect building
resolution aerial outlines and
image. .. calculate their area
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Conclusion

1 Household Energy

- ¥ Yearly Consumption
! =y (k)
' S [ <10,000

g Vi aalt™ ’ 10,000 - 11,000
) A ‘i [ 11,000- 12,000
t ’ et 2 [ 12,000 - 13,000
N I 13,000 - 14,000

I 14,000

From a high Detect building Use area of

resolution aerial outlines and detected buildings

image... calculate their area for energy use
estimation
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Conclusion

Household Energy

Yearly Consumption

Scale up to gather this (kWh)

data for whole cities, with
thousands of buildings,
anywhere in the world!

<10,000
10,000 - 11,000
11,000 - 12,000

I 12,000 - 13,000
B 13,000 - 14,000
I >4.000

|
|
—
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RS Solving Murders!

SUCCESS!!
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And even winning
awards for presenting!
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THANK YOU
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