Data-driven Approaches to Illuminate the Responses of Lakes to Multiple Stressors (2019-2020)


Freshwater resources have enormous value to society, but climate change and the growing human population present challenges for the sustainability of these ecological goods and services. Long-term records and whole-ecosystem experiments illuminate the responses of freshwater systems to stressors, informing water quality management efforts.

Research at the IISD-Experimental Lakes Area (IISD-ELA) has yielded seminal findings of the effects of key stressors on lakes, including acidification, nutrient loading, heavy metal contamination, food web alterations and oil spills. While the results of these studies are widely published in scientific journals and textbooks, the key findings are often not conveyed to nonspecialists in a meaningful way.

Project Description

This Bass Connections project will advance education and public literacy in aquatic science by leveraging data-enabled approaches to detecting and understanding lake stressors and their effects on aquatic ecosystems. Key aims of the project are to create a data-enabled storytelling platform to highlight iconic ecosystem experiments and long-term monitoring efforts at the IISD-ELA and to investigate the effects of climate change on lakes across time and space.

These aims will be achieved by weaving together three topical areas: science, storytelling and web design. Team members will develop a web-based data-enabled storytelling platform that will serve as a tool for teaching and public engagement. Site users will be able to explore classic whole-lake experiments conducted at IISD-ELA and use interactive data visualization tools to explore relationships among variables over time (long-term records) and space (multiple lakes). The intention is to provide nontechnical audiences with engaging and interactive virtual tours through iconic ecosystem experiments, in order to promote public understanding and education in aquatic science.

The team will also examine temperature-associated changes occurring in lakes at IISD-ELA over the course of five decades, targeting 15 lakes with long-term monitoring records. Reaching this goal will involve statistical analysis of long-term changes in temperature and water quality, as well as application of a MATLAB-based model to quantify the individual and interacting effects of climate stressors on seasonal ice cover, thermal stratification and surface temperature of lakes.

Anticipated Outcomes

Web-based, data-enabled storytelling platform housed on IISD-ELA website; modules from web-based platform for future multimedia museum exhibit; 1-2 manuscripts for publication; proposals for future funding

Student Opportunities

Ideally, this team will be comprised of 4 undergraduates and 1 master’s student from disciplines such as computer science, statistics, ecology, environmental studies, cultural anthropology and/or documentary studies.

The master’s student will provide guidance on R Shiny application development and data processing and will work in close consultation with communications and science staff at IISD-ELA.

All students will contribute directly to the various outcomes of the project, including developing websites, writing scholarly journal articles and helping curate a museum exhibition. Through this process, students will gain conceptual expertise, technical skills and communications capabilities in an interdisciplinary team setting.

All student team members will have the opportunity to travel to the IISD-ELA in Ontario, Canada, over a one-week period in Summer 2019.

A related Data+ project will take place in Summer 2019. Ideally, undergraduate students will be able to participate in both project components and the master’s student would serve as both the graduate student mentor of the Data+ team and the project manager for the Bass Connections team. Students interested in these related opportunities must complete applications for both the 2019-2020 Bass Connections project team and the Summer 2019 Data+ project team.


Summer 2019 – Spring 2020

  • Summer 2019: Process data from lake monitoring and experiments; develop R Shiny app, curated stories and data playground; consult with IISD-ELA staff on communication strategy; travel to IISD-ELA; conduct data collection with scientific staff; generate data for model input files
  • Fall 2019: Weekly student team meetings; bimonthly meetings with core team; improve and expand web modules; unveil website and museum exhibit; statistical analysis of long-term monitoring data; application of MATLAB-based model to IISD-ELA lakes; develop and publish climate effects web module
  • Spring 2020: Continue and complete activities


Independent study credit available for fall and spring semesters; summer funding is available

See related Data+ summer project, Data-driven Approaches to Illuminate the Responses of Lakes to Multiple Stressors (2019).


Image: Seagram Lake outflow, by Kevin Teague, licensed under CC BY 2.0

Seagram Lake outflow.

/faculty/staff Team Members

  • Kelly Alexander, Trinity - Cultural Anthropology-Ph.D. Student*
  • Emily Bernhardt, Arts & Sciences-Biology
  • Wenhong Li, Nicholas School of the Environment-Earth and Ocean Sciences
  • Kateri Salk-Gundersen, Nicholas School of the Environment-Environmental Sciences and Policy*
  • Jory Weintraub, Science & Society

/graduate Team Members

  • Kimberly Bourne, Civil & Environmental Engg-PHD

/zcommunity Team Members

  • Pauline Gerrard, IISD-ELA
  • Scott Higgins, IISD-ELA
  • Michael Paterson, IISD-ELA
  • Angela Reeves, IISD-ELA