Big Data for Reproductive Health (2019-2020)

Background

Increasing access to family planning is a global health priority that improves health, economic and quality of life outcomes of women and families. Despite this, one-third of women in low-income countries wishing to prevent pregnancy with modern methods of contraception discontinue its usage within the first year, and half within the first two years. Ensuring women continue contraceptive use for pregnancy prevention requires strong health systems and informed advocates and policymakers.

Existing data on contraception discontinuation (quitting, switching and method failure) are obtained through household surveys administered every five years through a retrospective month contraceptive calendar. However, the data are difficult to analyze and are underutilized by advocates and policy makers. New and existing data must therefore be curated into user-friendly digital tools to provide a higher resolution picture of the pathways of contraceptive use.

Project Description

This Bass Connections project aims to improve access to family planning by providing stakeholders with necessary data to inform their advocacy and policymaking efforts.

To do this, the 2019-2020 project team will build on the work produced by the 2018-2019 Bass Connections team and the 2018 and 2019 Data+ summer projects.

In 2019-2020, the specific goals of this project are to:

  • Build and disseminate a web-based platform that curates freely available, raw data on contraceptive discontinuation from household surveys into a tool that makes higher resolution inferences possible by members of the family planning community.
  • Apply big data analytic techniques to Demographic and Health Surveys (DHS) contraceptive calendar data, rendering the data more useful.
  • Identify how big data can provide real-time surveillance around reproductive health, which can improve family planning policy.

This project will continue to engage key family planning and global health stakeholders in the Triangle, including the Carolina Population Center, FHI360, RTI, IntraHealth International, MEASURE Evaluation and Ipas.

Anticipated Outputs

Enhanced web platform to disseminate data visualization tool; enhanced user-interface for prediction tool built by previous teams; protocol to test usefulness and validity of prediction tool

Student Opportunities

Ideally, this team will include 5-6 undergraduate students and 2-3 graduate students from Computer Science, Statistics, Global Health, Gender, Sexuality & Feminist Studies, Psychology, Sociology and Public Policy. Students may possess a range of technical and nontechnical skills, but creativity is a must.

Undergraduate, graduate and postgraduate students seeking to write theses and develop original research using the contraceptive calendar data and big data on family planning would be an asset to data collection and research development.

Team members will be exposed to an interdisciplinary environment, working with diverse stakeholders, and will learn to develop and refine research tools and protocols. Students will have professional development opportunities and gain technical skills related to web-content development and machine learning.

At the project outset, team members will be split into two subgroups. One subgroup will focus on human-centered design research around the data visualization tools, while the other will work on designing a protocol to test the prediction tool.

A related Data+ project will take place in Summer 2019. Participation on the Data+ project team is optional and not required for participation on the year-long Bass Connections project team. Students interested in participating on both teams must complete applications for both the 2019-2020 Bass Connections project team and the Summer 2019 Data project team.

Timing

Fall 2019 – Spring 2020

  • Fall 2019: Begin weekly team meetings and split into sub-groups; develop and implement work plans, and develop timelines for completion; students working on programming begin working through Coursera course on machine learning in Python
  • Spring 2020: Continue weekly meetings to track project progress; travel to conferences; begin field testing prediction tool

Crediting

Independent study credit available for fall and spring semesters; summer funding available

See related Data+ summer project, Big Data for Reproductive Health (2019).

See earlier related team, Big Data for Reproductive Health (2018-2019), and a Data+ summer project, Big Data for Reproductive Health (2018).

Big Data logo.

/faculty/staff Team Members

  • Amy Finnegan, Duke Global Health Institute|Social Science Research Institute*
  • Amy Herring, Arts & Sciences-Statistical Science
  • Megan Huchko, School of Medicine-Obstetrics and Gynecology*

/zcommunity Team Members

  • RTI International
  • IntraHealth International
  • Carolina Population Center (CPC)
  • FHI 360
  • MEASURE Evaluation
  • Ipas